Convolutions of Planar Harmonic Convex Mappings

نویسنده

  • MICHAEL DORFF
چکیده

Ruscheweyh and Sheil-Small proved that convexity is preserved under the convolution of univalent analytic mappings in K. However, when we consider the convolution of univalent harmonic convex mappings in K H , this property does not hold. In fact, such convolutions may not be univalent. We establish some results concerning the convolution of univalent harmonic convex mappings provided that it is locally univalent. In particular, we show that the convolution of a right half-plane mapping in K H with either another right halfplane mapping or a vertical strip mapping in K H is convex in the direction of the real axis. Further, we give a condition under which the convolution of a vertical strip mapping in K H with itself will be convex in the direction of the real axis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex combinations of harmonic shears of slit mappings

‎In this paper‎, ‎we study the convex combinations of harmonic mappings obtained by shearing a class of slit conformal mappings‎. ‎Sufficient conditions for the convex combinations of harmonic mappings of this family to be univalent and convex in the horizontal direction are derived‎. ‎Several examples of univalent harmonic mappings constructed by using these methods are presented to illustrate...

متن کامل

Convolutions of Harmonic Convex Mappings

The first author proved that the harmonic convolution of a normalized right half-plane mapping with either another normalized right halfplane mapping or a normalized vertical strip mapping is convex in the direction of the real axis. provided that it is locally univalent. In this paper, we prove that in general the assumption of local univalency cannot be omitted. However, we are able to show t...

متن کامل

On the Linear Combinations of Slanted Half-Plane Harmonic Mappings

‎In this paper,  the sufficient conditions for the linear combinations of slanted half-plane harmonic mappings to be univalent and convex in the direction of $(-gamma) $ are studied. Our result improves some recent works. Furthermore, a illustrative example and imagine domains of the linear combinations satisfying the desired conditions are enumerated.

متن کامل

A new subclass of harmonic mappings with positive coefficients

‎Complex-valued harmonic functions that are univalent and‎ ‎sense-preserving in the open unit disk $U$ can be written as form‎ ‎$f =h+bar{g}$‎, ‎where $h$ and $g$ are analytic in $U$‎. ‎In this paper‎, ‎we introduce the class $S_H^1(beta)$‎, ‎where $1<betaleq 2$‎, ‎and‎ ‎consisting of harmonic univalent function $f = h+bar{g}$‎, ‎where $h$ and $g$ are in the form‎ ‎$h(z) = z+sumlimits_{n=2}^inf...

متن کامل

One-to-one piecewise linear mappings over triangulations

We call a piecewise linear mapping from a planar triangulation to the plane a convex combination mapping if the image of every interior vertex is a convex combination of the images of its neighbouring vertices. Such mappings satisfy a discrete maximum principle and we show that they are oneto-one if they map the boundary of the triangulation homeomorphically to a convex polygon. This result can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002